A variational data assimilation system for soil–atmosphere flux estimates for the Community Land Model (CLM3.5)
نویسندگان
چکیده
This paper presents the development and implementation of a spatio-temporal variational data assimilation system (4D-var) for the soil–vegetation–atmosphere transfer model “Community Land Model” (CLM3.5), along with the development of the adjoint code for the core soil–atmosphere transfer scheme of energy and soil moisture. The purpose of this work is to obtain an improved estimation technique for the energy fluxes (sensible and latent heat fluxes) between the soil and the atmosphere. Optimal assessments of these fluxes are neither available from model simulations nor measurements alone, while a 4D-var data assimilation has the potential to combine both information sources by a Best Linear Unbiased Estimate (BLUE). The 4D-var method requires the development of the adjoint model of the CLM which is established in this work. The new data assimilation algorithm is able to assimilate soil temperature and soil moisture measurements for one-dimensional columns of the model grid. Numerical experiments were first used to test the algorithm under idealised conditions. It was found that the analysis delivers improved results whenever there is a dependence between the initial values and the assimilated quantity. Furthermore, soil temperature and soil moisture from in situ field measurements were assimilated. These calculations demonstrate the improved performance of flux estimates, whenever soil property parameters are available of sufficient quality. Misspecifications could also be identified by the performance of the variational scheme.
منابع مشابه
Surface energy partitioning over four dominant vegetation types across the United States in a coupled regional climate model (Weather Research and Forecasting Model 3–Community Land Model 3.5)
[1] Accurate representation of surface energy partitioning is crucial for studying land surface processes and the climatic influence of land cover and land use change using coupled climate-land surface models. A critical question for these models, especially for newly coupled ones, is whether they can adequately distinguish differences in surface energy partitioning among different vegetation t...
متن کاملRoot Zone Soil Moisture Retrieval Using Streamflow and Surface Moisture Data Assimilation in Nested Catchments
Correct knowledge of soil moisture is important for improving the prediction of coupled land surface atmosphere interactions. This is due to the control that soil moisture exerts on the latent and sensible heat flux transfer between the land surface and atmosphere. Because of this strong dependence on moisture availability, improved atmospheric prediction requires correct initialisation of soil...
متن کاملVariational Gravity Data Assimilation to Improve Soil Moisture Prediction in a Land Surface Model
Accurate prediction of soil moisture in a land surface model (LSM) is critical in improving land surface and atmosphere interactions in the atmospheric general circulation models used in numerical weather prediction and global climate models. Gravity is a relatively new source of remotely sensed data, available since the launch of the twin Gravity Recovery And Climate Experiment (GRACE) satelli...
متن کاملIntercomparison of the JULES and CABLE land surface models through assimilation of remotely sensed soil moisture in southeast Australia
Numerous land surface models exist for predicting water and energy fluxes in the terrestrial environment. These land surface models have different conceptualizations (i.e., process or physics based), together with structural differences in representing spatial variability, alternate empirical methods, mathematical formulations and computational approach. These inherent differences in modeling a...
متن کاملVariational Assimilation of Remote Sensing Data for Land Surface Hydrologic Applications
Soil moisture plays a major role in the global hydrologic cycle. Most importantly, soil moisture controls the partitioning of available energy at the land surface into latent and sensible heat fluxes. We investigate the feasibility of estimating large-scale soil moisture profiles and related land surface variables from low-frequency (L-band) passive microwave remote sensing observations using w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014